2020年全国高等院校工程应用技术教师大赛

AS2-"可编程序控制系统设计及应用"赛项 (五自由度机器人)

(本科组)

"工程实践操作"作业书

(样本)

场次:______赛位号:_____

2020年全国高等院校工程应用技术教师大赛

AS2-"可编程序控制系统设计及应用"赛项(五自由度机器人)(本科组)

赛项指定平台: THPSF-5A型 可编程序控制系统实验/开发平台(西门子) (二选一) THPSF-5B型 可编程序控制系统实验/开发平台(三菱)

依据大赛执行方案,决赛分"工程实践操作"和"目标命题实现"两个比赛环节。第 一个环节主要比基本技能操作和工程素质,第二个环节主要比规定目标下的应用创新和解 决问题的能力。

1、"工程实践操作"比赛环节

根据本赛项"工程实践操作"作业书(正本),在限定的赛项平台上,完成"作业书" 规定的所有操作步骤和技术要求,时限120分钟。现场裁判从工程能力素养要求的角度,就 工艺、标准、规范、安全等方面,对参赛选手现场操作的结果进行评判,给出百分制成绩, 权重0.40。

本赛项"工程实践操作"环节的比赛内容:

(1) 设备线路连接——按照设备工作原理图,连接PLC、驱动器之间的电缆。

(2) 设备软、硬件配置——接通电源,设置驱动器参数,完成PLC的程序调试和下载。

(3)系统调试与联动 ——调试相关的系统功能,并根据运行情况调整或修改相关设备的配置参数,使系统达到规定的性能要求。

(4) 排除故障 —— 排除调试过程中可能遇到的设备故障、系统故障。

2、"目标命题实现"比赛环节

根据本赛项"目标命题实现"任务书(正本),在限定的赛项平台上,完成任务书中规 定的目标任务和技术要求,时限120分钟。评审专家从工程应用和解决问题能力的角度,就 方案设计、方案实现、实施效果和答辩情况等方面,对参赛选手完成目标命题任务的结果 进行评判,给出百分制成绩,权重0.60。

本赛项"目标命题实现"环节的比赛内容:

根据"目标命题实现"任务书(正本)的要求,在指定的赛项平台上实现所设计的方案,包括也可不仅限于此:

(1) 系统装配——根据设计方案装配系统硬件,完成系统硬件安装。

(2)软件配置——根据设计方案配置软件参数,完成软件程序调试。

(3) 系统组成——根据设计方案组成控制系统回路。

(4) 系统调试——根据设计方案进行系统调试。

(5)运行结果——根据设计系统的运行实况,收集数据、整理运行结果。

3、成绩评定

(1)现场裁判依据本赛项"工程实践操作"作业书(正本)规定的操作步骤和技术 要求,通过考察参赛选手的现场表现,按照为本赛项制定的评分规则,给出本环节的百分 制成绩,权重 0.40。

(2)评审专家依据本赛项"目标命题实现"任务书(正本)规定的任务和技术要求, 通过观看实施成果演示和现场答辩,按照决赛评分规则,各评委独立给出百分制成绩,平 均后为本环节的成绩,权重 0.60。

(3) 决赛两个环节的成绩加权和为参赛选手的最终成绩。

"工程实践操作"作业书(五自由度机器人)

一、设备线路连接

按照给定的五自由度机械手控制电路接线图(如图1)和端口分配表(如表1),连接机械手单元 PLC 控制电路,主要包含 PLC 输入与输出端。

图1 五自由度机械手控制电路接线图

第六届(2020年)全国高等院校工程应用技术教师大赛 一"工程实践操作"作业书(AS2-可编程序控制系统设计及应用)

序号	西门子 PLC 地址 (PLC 端子)	三菱 PLC 地址 (PLC 端子)	电气符号	功能说明
1	10.0	X00	SB1	复位按钮(黄色)
2	I0.1	X01	SB2	启动按钮(绿色)
3	10.2	X02	SB3	停止按钮(红色)
4	10.3	X03	SB4	急停按钮
5	I0.4	X04	B1	原点信号(左)
6	10.5	X05	B2	减速信号 (中)
7	10.6	X06	В3	限位信号(右)
8	10.7	X07	B4	底座旋转限位
9	I1.0	X10	PLCOUT1	单片机动作完成信号
10	Q0.0	Y00	PUL1	水 平 移 动 步 进 驱 动 器 PUL1+
11	Q0.1	Y01	PUL2	底座旋转步进驱动器 PUL2+
12	Q0.2	Y02	DIR1	水 平 移 动 步 进 驱 动 器 DIR1+
13	Q0.3	Y03	DIR2	底座旋转步进驱动器 DIR2+
14	Q0.4	Y04	PLCIN1	夹取控制信号
15	Q0.5	Y05	PLCIN2	位置编码信号(1)
16	Q0.6	Y06	PLCIN3	位置编码信号(2)
17	Q0.7	Y07	PLCIN4	位置编码信号(4)
18	主机输入1M\2M,输 出1L+\2L+接电源 +24V		+24V	电源正端
19	主机输出 1M\2M 接 电源 GND	主机 COM0、 COM1、COM2、 COM3 接电源 GND	0V	电源地端

表1 端口分配表

二、驱动部件调整及传感器调整

1、步进驱动器参数设置

① M542 步进驱动器采用八位拨码开关设定细分精度、动态电流和半流/全流,具体 位置如图 4 所示,具体的参数设置如表 2 所示。

注:参数设置前需将步进电机驱动器电源关闭,参数设置完成后方可将电源打开。

图4 M542步进驱动器

表	£2	M542	步进驱动制	器参数设置	置 值

拨码开关	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
设置状态	ON	ON	OFF	OFF	OFF	ON	OFF	OFF

② 3M660 步进驱动器采用八位拨码开关设定细分精度、动态电流和半流/全流,具体 位置如图 5 示,具体的参数设置如表 3 所示。

注:参数设置前需将步进电机驱动器电源关闭,参数设置完成后方可将电源打开。

图5 3M660步进驱动器

表3 3M660步进驱动器参数设置值

拨码开关	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
设置状态	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF

2、传感器测试

在调试过程中,可根据台面接线图,适当调整直线原点传感器与直线减速传感器位置。

图6 传感器接线图

三、系统调试与联动

利用图 7 与表 4 所示,完成下面指定功能的 PLC 程序调试,并将程序下载到 PLC 中, 完成如下功能调试(**注**: 插拔下载网线前, PLC 必须断电)。

具体要实现的功能:

- 控制程序具有"复位"、"启动"、"停止"及"急停"功能,黄色按钮为"复位"、 绿色按钮为"启动"、红色按钮为"停止"。
- ② 按下"复位"按钮,五自由度机械手开始复位,基座旋转至原位,五自由度机械 手水平移动至左侧原位传感器处停止,复位完成(其中五自由度机械手手臂及手 爪复位由单片机来完成)。
- ③ 复位完成后,按下"启动"按钮,五自由度机械手依次将1、2号位的工件搬运至 3、4号位置;完成后再依次将3、4号位的工件搬运至5、6号位;最后再依次将 5、6号位的工件搬运至1、2位置后回到初始位置。完成一个工作周期后,如需 再次运行,可再次按"启动"按钮。
- ④ 五自由度机械手在运动过程中,按"停止"按钮,五自由度机械手完成当前动作 后停止运行,按"启动"按钮,五自由度机械手继续下一步动作。
- ⑤ 在五自由度机械手运动时,按下"急停"开关五自由度机械手立即停止移动及转向,此时如需再次运行机械手,需将本次搬运途中掉下的工件拿到物料台,再按 "复位"按钮复位完成后,按启动可重新运行。
- ⑥ 在运行过程中,按"复位"5s,系统重新复位。
- ⑦ 五自由度机器人步进电机驱动无法接收方向信号故障,步进电机无法反向运行, 请参赛选手根据端口分配表及故障现象排除所述故障,使系统正常运行。

图7 五自由度机械手运动点位置图

位置取放		PLCIN1 (Q0.4\Y04)	PLCIN2 (Q0.5\Y05)	PLCIN3 (Q0.6\Y06)	PLCIN4 (Q0.7\Y07)
1号位置	取	1	0	0	1
	放	0	0	0	1
2 号位置	取	1	0	1	0
	放	0	0	1	0
3号位置	取	1	0	1	1
	放	0	0	1	1
4号位置	取	1	1	0	0
	放	0	1	0	0
5号位置	取	1	1	0	1
	放	0	1	0	1
6号位置	取	1	1	1	0
	放	0	1	1	0
复位		1	1	1	1

表4 控制信号、位置编码信号对应单片机控制位置的编码

四、现场裁判验收确认

参赛选手完成"工程实践操作"后,填写《AS2-可编程序控制系统设计及应用"赛 项操作结果记录表》,报请现场裁判验收确认。

五、注意事项

为防止意外事故发生,操作者必须遵守下面的安全规则:

- ① 在通电情况下,严禁带电插拔任何接线端子和排线,以免造成人身及设备损坏。
- ② 出现故障时,应立即按下控制柜面板上的【急停】按钮,检查设备排除故障后,方可继续运行,对不能排查出的故障,必须请相关技术人员进行排查维修,以免造成设备的损坏。
- ③ 对设备进行任何维修操作时,都必须停止运行设备,切断设备电源,在确认关闭设 备"电源总开关"并取下钥匙后,方可以进行进一步操作。

AS2-"可编程序控制系统设计及应用"赛项操作结果记录表 (五自由度机器人)

场次: _____ 赛位号: _____ 操作时间: 2020 年 <u>11</u>月 日, ____: 到 ___:

五自由度机器人测试记录

序 号	测试项目	测试结果	选手确认 (签赛位号)	裁判 确认	备注
1	控制系统能否正常启动和停止?				
2	设备连接是否正确?				
3	能否正确设置驱动器参数?				
4	驱动器故障是否排除,能控制电机方 向?				
5	原点传感器是否正常?				
6	直线减速传感器是否正常?				
7	能否正常搬运工件?				
8	机器手是否能回初始位置点?				