2020年全国高等院校工程应用技术教师大赛 E&E1-"水环境监测与治理技术"赛项 (本科组)

"工程实践操作"作业书

(样本)

2020年全国高等院校工程应用技术教师大赛

E&E1-"水环境监测与治理技术"赛项(本科组)

竞赛指定平台: THEMJZ-3型 水环境监测与治理技术实验/开发平台

依据大赛执行方案,决赛分"工程实践操作"和"目标命题实现"两个环节。第一 个环节主要比基本技能操作和工程素质,第二个环节主要比规定目标下的应用创新和解 决问题的能力。

1、"工程实践操作"比赛环节

根据本赛项"工程实践操作"作业书(正本),在限定的赛项平台上,完成作业书规定的所有操作步骤和技术要求,时限120分钟。现场裁判从工程能力素养要求的角度,就工艺、标准、规范、安全等方面,对参赛选手现场操作的结果进行评判,给出百分制成绩,权重0.40。

本赛项"工程实践操作"环节的比赛内容:

(1) 工艺连接 —— 根据提供的相关图纸,完成水处理系统的工艺管道连接、仪器安装,并完善工艺流程。

(2)系统连接与参数设置 —— 连接水处理设备和控制柜之间的电缆,完善线路 连接并正确启动设备,完成在线仪表的标定和参数设置。

(3) 系统软件配置 —— 正确配置 PLC 和触摸屏的监控软件,并完成相关下载。

(4)系统调试与故障排除 —— 排除预先设置、可能的设备或工艺故障,完成设备功能调试和管道试水,达到能进行污水处理的功能。

2、"目标命题实现"比赛环节

根据本赛项"目标命题实现"任务书(正本),在限定的赛项平台上,完成任务书规定的目标任务和技术要求,时限120分钟。评审专家从工程应用和解决问题能力的角度,就方案设计、方案实现、实施效果和答辩情况等方面,对参赛选手完成目标命题任务的结果进行评判,给出百分制成绩,权重0.60。

"目标命题实现"环节的比赛内容:

根据"目标命题实现"任务书(正本)的要求,在指定的赛项平台上实现所设计的 方案,包括也可不仅限于此:

(1)池体选择 —— 根据设计方案,选择合适的池体与组件,搭建系统框架。

(2) 工艺连接 —— 根据设计方案和所选池体,连接工艺管道,完成处理工艺流程构建。

(3) 软、硬件配置 —— 根据设计方案配置软、硬件参数,完成药剂配制和部件 调试。

(4)系统调试 —— 根据设计方案,开阀进水,在保证管道密封性的前提下,整 定运行参数,监控运行状态,确认最优方案以达到最好的处理效果。

(5)运行结果 —— 根据设计系统的运行实况,采集水样、检测数据、整理结果, 生成报表。

3、成绩评定

(1)现场裁判依据本赛项"工程实践操作"作业书(正本)规定的操作步骤和技术要求,通过考察参赛选手的现场表现,按照为本赛项制定的评分规则,给出本环节的百分制成绩,权重 0.40。

(2) 评审专家依据本赛项"目标命题实现"任务书(正本)规定的任务和技术要求,通过观看实施成果演示和现场答辩,按照决赛评分规则,各评委独立给出百分制成绩,平均后为本环节的成绩,权重 0.60。

(3)决赛两个环节的成绩加权和为参赛选手的最终成绩。

"工程实践操作"作业书

一、工艺连接

利用提供的工具与耗材,根据图1补全水处理系统的工艺管道;参照图1将溶氧仪的 电极放置调节池并固定好(注意:电极根部禁止侵入水中)。

①-短柄球网 ②-自动排气网 ③-立式止回阀 ④-闸阀 ⑤-管道流量计 ⑧-面板流量计 ⑦-溶氧电极

图1 工艺管道安装图

二、系统连接与参数设置

连接设备对象和控制柜之间的航空电缆;连接PLC下载线、触摸屏下载线以及PLC 与触摸屏之间的通讯线;根据如下PLC端口定义表,检查并完成电气控制柜的接线(导 线颜色与插座颜色要一致,导线的长度要适中;当插座颜色不同时,上下接线以上边的 插座颜色为准,左右接线以左边的插座颜色为准;导线长度与两个插座之间的距离相差 不要超过20cm)。

娄	女字量输入定义	数字量输出定义		
PLC 输入点	定义、注释	PLC 输出点	定义、注释	
I0.1	系统启动按钮 SB1	Q0.2	进水阀 YV1	
I0.2	系统停止按钮 SB2	Q0.3	SBR1 进水阀 YV2	
I0.3	系统复位按钮 SB3	Q0.6	SBR2 进水阀 YV3	
I0.0	手自动切换按钮 SB4	Q2.1	SBR1 排气阀 YV4	
I0.7	调节池上限 限位信号 1	Q2.5	SBR1 排水阀 YV5	
I1.0	调节池下限 限位信号 2	Q2.6	SBR2 排气阀 YV6	
I1.1	沉砂池上限 限位信号 3	Q2.7	SBR2 排水阀 YV7	
I0.4	厌氧池下限 限位信号 4	Q0.1	药水搅拌机 MA1	
10.5	缺氧池上限 限位信号 5	Q0.4	调节池搅拌机 MA2	
I0.6	缺氧池下限 限位信号6	Q0.7	厌氧池搅拌机 MA3	

表1 PLC端口定义表

第六届(2020年)全国高等院校工程应用技术教师大赛 ——"工程实践操作"作业书(E&E1-水环境监测与治理技术)

I1.2	SBR1 上限 限位信号 7	Q2.0	缺氧池搅拌机 MA4		
I1.3	SBR1 下限 限位信号 8	Q2.2	风机 1 MA5		
I1.5	SBR2 上限 限位信号 9	Q2.3	风机 2 MA6		
I1.4	SBR2 下限 限位信号 10	Q2.4	风机 3 MA7		
1M	直流电源输出 24V	Q0.0	提升泵 MA8		
2M	直流电源输出 24V	Q1.0	内回流泵 MA10		
		Q1.1	加药泵 MA11		
		Q0.5	外回流泵 MA9		
		1L	交流电源输出 L		
		2L	交流电源输出 L		
		3L	交流电源输出 L		
		4L	交流电源输出 L		
		5L	交流电源输出 L		
枚	模拟量输入定义	模拟量输出定义			
A+	在线式 DO 仪 (一) +	M0	调速模块 1-		
A-	在线式 DO 仪 (一) -	V0	调速模块1+		
B+	在线式 DO 仪(二)+	M1	调速模块 2-		
В-	在线式 DO 仪(二)-	V1	调速模块2+		
C+	在线式 DO 仪(三)+				
C-	在线式 DO 仪 (三) -				
D+	在线式 DO 仪(四)+				
D-	在线式 DO 仪(四)-				
E+	在线式 PH 仪 +				
E-	在线式 PH 仪 -				
注 : 面板上控制对象部分三个"N"与交流电源输出"N"短接					

1、pH仪标定

(注意:同时完成pH仪标定记录单的填写)

① 配制标准缓冲液pH6.86和pH4.00,将相应pH缓冲剂粉末倒入250ml容量瓶中,配制标准溶液。

② 将标定仪器通电预热10分钟,预热前和结束后,举手示意裁判,记录开始和结束时间并签字。

③ 零点标定(pH6.86),将pH仪传感器探头放在标准缓冲液中,待屏幕显示有ZERO 和6.86,说明仪器零点校正完成。

④ 斜率标定(pH4.00),将pH仪传感器探头放在标准缓冲液中,待屏幕显示有SLOPE 和4.00,说明仪器斜率校正完成。

⑤ 按照表2,进行在线仪表参数设置。

ねょん	吉扣数Ⅱ1 1	们也做工) # 5 D 1	北水水产
名称	局报警 High	低 拔 答 Low	滞后 Delay	
DO 仪表(一)	0.5mg/L	0.02mg/L	0.1 mg/L	
pH 仪表	9	6	0.1	

表2 仪表参数设置

三、系统软件配置

1、上电测试

检查控制柜与水处理对象之间的航空电缆是否连接好;检查各环节线路连接的完整 和正确,确保线路连接安全;确认电控柜中电源控制单元【熔断器】中安装10A熔断芯; 检查完毕后,在裁判监督下,完成开机上电和输入电压检测任务;同时填写通电检测记 录单。用万用表"交流电750V"档,检测220V电源,确保强电正常接入;用万用表"直流 电200V"档,检测24V电源,同时仪表显示为正数,确保弱电正常接入。

2、PLC程序下载

打开 PLC 程序,选择合适的端口,使通讯功能正常,将 PLC 程序下载到 PLC 主机上,让 PLC 主机处于 "RUN"状态。

3、触摸屏工程下载

打开触摸屏工程,使通讯功能正常,将触摸屏工程下载到触摸屏上。

四、系统调试与故障排除

按照以下步骤依次操作,完成处理系统设备调试,并填写系统调试记录单(如有响应不对的设备,请先检查实验导线的连接),调试期间发现系统故障,进行排故维护,并填写系统维护日常记录单。

① 轻点触摸屏主界面上的〖自动控制〗按钮,查看〖手/自动切换〗按钮的状态。 确保按钮在手动状态,即按钮处于弹起(指示不亮)的情况下,退出自动控制界面,返 回主界面。

② 轻点触摸屏主界面上的〖调试界面〗按钮,进入手动调试环节。依次点动触摸 屏上〖提升泵〗、〖内回流泵〗、〖外回流泵〗、〖加药泵〗开关,查看其运行状况,应无强 烈震动、无太大噪音。

③ 打开触摸屏上的〖药水搅拌机〗、〖调节池搅拌机〗、〖厌氧搅拌机〗、〖缺氧搅拌 机〗、〖调速电机1〗和〖调速电机2〗开关,确保对应搅拌机运行无强烈震动、无太大噪 音,并且不会刮到边上的器件。

④ 依次打开触摸屏上的〖风机1〗、〖风机2〗和〖风机3〗开关,观察其是否正常工作。调节对应气体流量计阀门,观察流量计的读数变化,读数应随闸阀的开度增大而增大,反之则减小。

⑤ 依次打开触摸屏上的〖进水阀〗、〖SBR1进水阀〗、〖SBR2进水阀〗、〖SBR1排气阀〗、 〖SBR1排水阀〗、〖SBR2排气阀〗和〖SBR2排水阀〗开关,确保对应电磁阀能正常工作。

⑥ 依次检查各个浮球开关,检查其是否与监控屏上的指示一一对应。

五、现场裁判验收确认

参赛选手完成"工程实践操作"后,填写《E&E1-"水环境监测与治理技术"赛项操作结果记录单》中的"pH仪标定记录单"、"通电检测记录单"、"系统调试记录单"和"系统维护日常记录单",报请现场裁判验收确认。

E&E1-"水环境监测与治理技术"赛项操作结果记录单

场次: <u>第 场</u>,**赛位号:** _____ 操作时间: 2020 年 11 月 日,从 _:_到 _:__

pH 仪标定记录单

仪表名称	预热开始	裁判签	预热结束	裁判	零点标定	裁判	斜率标定	裁判签
	时间	字	时间	签字	值	签字	值	字
在线式 pH 仪								

系统软件及通电检测记录单

序号	项目	实测数据	选手签赛位号	裁判签字
1	交流 220V 检测			
2	直流 24V 检测			
3	PLC 程序下载完成 □是 □否			
4	触摸屏工程下载完成 □是 □否			

系统调试记录单

序号	项目	选手签赛位号	裁判签字
1	浮球液位开关测试完成 □是 □否		
2	器件通电、水泵试水完成 □是 □否		
3	水泵进出口管道试漏完成 □是 □否		
4	系统调试完成 □是 □否		

系统维护日常记录单

日期		维修人员	
故障点位置	故障现象		解决方案